

A Holistic Approach to Subclinical Thyroid Dysfunction and “Sub-Laboratory” or Symptomatic Thyroid Insufficiency: A Review of Evidence from Peer-Reviewed Journals

A public service informational document courtesy of
Dr. Darleen Claire Wodzenski, MS ESE, MA CMHC, PhD, NCC, LPC, ACS

in partnership with Orchard Human Services, Inc., an IRS-approved 501(c)(3) nonprofit organization

Introduction

I am deeply passionate about holistic approaches to health and well-being that recognize the mind and body as a continuous field of information. In my personal life and in my practice, I've seen how thyroid dysfunction often manifests not just as isolated hormonal imbalances but as disruptions in this intricate mind-body continuum. Subclinical or "sub-laboratory" thyroid issues, where symptoms persist despite normal lab results, underscore the need for integrative strategies that go beyond pharmaceuticals. By addressing nutritional, environmental, emotional, and energetic factors, we can restore harmony and support the body's innate healing intelligence. This paper synthesizes evidence-based holistic modalities to empower individuals toward optimal thyroid health and overall vitality.

Take good care of you ----- Dr. Darleen

A Holistic Approach to Subclinical Thyroid Dysfunction and “Sub-Laboratory” or Symptomatic Thyroid Insufficiency: A Review of Evidence from Peer-Reviewed Journals

Executive Summary

This white paper explores a comprehensive, holistic framework for managing subclinical thyroid dysfunction and symptomatic thyroid insufficiency, including cases with normal laboratory findings. Drawing from peer-reviewed evidence, it covers nutritional and herbal support, homeopathic remedies, natural desiccated thyroid preparations, environmental protections, gut microbiome optimization, heart rate variability, red light therapy, psychosocial factors, epigenetics, meditation, dietary sensitivities, mitochondrial health, heat and cold therapy, mold and toxin exposure, music and artistic expression, sunlight and circadian health, earthing, movement, Qigong, emergent peptide research, and somatic therapies like acupuncture and massage. The goal is to empower individuals with integrative strategies that address root causes, enhance well-being, and complement conventional care. Key takeaways emphasize personalized, mind-body approaches recognizing the interconnectedness of physical, emotional, and environmental factors in thyroid health. This white paper has been created by a synergy between human inspiration and AI technology.

Nutritional and Herbal Support

Nutritional deficiencies and herbal adaptogens can improve thyroid function and alleviate symptoms even when laboratory changes are minimal.

Ashwagandha (600 mg daily for 8 weeks) significantly improved TSH, T3, and T4 in subclinical cases and is widely used for symptom relief in symptomatic patients with normal labs due to its adaptogenic and energy-enhancing effects (Sharma et al., 2018). Selenium and myo-inositol combinations reduce antibodies and TSH while improving well-being in autoimmune-related cases (Nordio & Basciani, 2017; Pirola et al., 2020). Vitamin D supplementation lowers TSH and enhances metabolic and mood parameters (Safari et al., 2023). Low vitamin D levels are strongly associated with increased risk of subclinical hypothyroidism and autoimmune thyroid disease; correction of deficiency is a foundational holistic strategy (Taheriniya et al., 2025; Ahmad et al., 2025).

When supplementing vitamin D, some individuals—particularly those requiring higher doses or with impaired vitamin K status—may benefit from combining vitamin D3 with vitamin K2 (menaquinone-7 form) to direct calcium toward bone mineralization and reduce the risk of soft-tissue calcification and hypercalcemia, which could contribute to arterial stiffness or cardiovascular disease (van Ballegooijen et al., 2017; Visseren et al., 2021). This synergistic approach supports thyroid-related metabolic improvements while enhancing safety in long-term supplementation.

Additional nutrients (iron, zinc, vitamin A, B12) support conversion and receptor function, often benefiting symptomatic patients with normal labs when deficiencies are present (Kalra et al., 2022; Farhangi et al., 2012; Mahmoodianfard et al., 2015).

Cautious iodine use (e.g., Lugol's solution, Iodoral) may help in confirmed deficiency but can worsen symptoms in iodine-sufficient individuals or those with underlying autoimmunity (Di Cosmo et al., 2025; Shrestha et al., 2017; Kwak et al., 2021).

Homeopathic and Individualized Remedies

Individualized homeopathy has been shown to normalize mildly elevated TSH and significantly improve symptoms in patients with subclinical hypothyroidism, suggesting utility in symptomatic cases with normal labs where conventional treatment is not indicated (Grelle et al., 2022). Complementary to classical homeopathy, Bach Flower Remedies—essences derived from flowers aimed at emotional balance—may support thyroid health by addressing stress and mood imbalances that exacerbate symptoms. A case report demonstrated that combining constitutional homeopathic remedies with Bach Flower Remedies effectively treated subclinical hypothyroidism, potentially by harmonizing emotional states that influence endocrine function (Jain & Sharma, 2024). Rescue Remedy, a specific Bach blend for acute stress, has been anecdotally used for thyroid-related anxiety, though systematic reviews of Bach remedies indicate effects may not surpass placebo in general trials; however, their role in holistic thyroid care warrants further exploration for symptom relief (Ernst, 2010).

Natural Desiccated Thyroid Preparations

Desiccated thyroid extract (e.g., Armour Thyroid, Nature-Throid) has been used empirically for decades in patients with persistent hypothyroid symptoms despite normal laboratory results—so-called “sub-laboratory” hypothyroidism. A key review highlights clinical improvements in energy, cognition, and well-being in this population when treated with natural desiccated thyroid,

even when conventional tests do not justify synthetic levothyroxine (Gaby, 2004). Some patients report better symptom resolution with NDT due to its provision of T3, T2, and other thyroid fractions not present in levothyroxine alone (Heald et al., 2024; Idrees et al., 2024).

Environmental Protection: Reducing Halide Interference

Competitive inhibition of iodine uptake by fluoride, bromide, and (to a lesser extent) chloride may contribute to symptomatic thyroid insufficiency even when labs appear normal. Fluoride inhibits the sodium-iodide symporter (NIS) and is linked to altered thyroid function (Duhán et al., 2019; Ibarra-Santana et al., 2024). Bromide displaces iodine in the thyroid and increases iodide excretion (Pavelka, 2004; Vobecký et al., 1996). Reducing exposure—via water filtration, avoiding brominated flour and flame retardants, and minimizing unnecessary fluoride—may enhance iodine utilization and alleviate symptoms in environmentally sensitive individuals.

Purified water free of chlorine is important, as chlorine in drinking water can interfere with thyroid function by competing with iodine uptake or altering hormone levels. Studies have shown that higher chlorine concentrations in drinking water may contribute to goiter and impaired thyroid function, particularly in vulnerable populations (Elhassan et al., 2023). Using reverse osmosis or carbon filtration systems can remove chlorine, potentially supporting better thyroid health.

Opting for natural bread products without brominated flour (potassium bromate) is crucial, as potassium bromate is an oxidizing agent used in baking that can lead to bromide accumulation, which has been linked to thyroid tumors and disrupted hormone homeostasis in animal models (Alli et al., 2023; EFSA Panel on Contaminants in the Food Chain, 2025). Choosing organic or un-brominated bread avoids this risk and may help maintain iodine balance. Specialized dental products without fluoride, such as fluoride-free toothpaste and mouthwash, may minimize chronic low-level exposure. Fluoride in dental products has been associated with thyroid dysfunction, including hypothyroidism and goiter, in systematic reviews (Miranda et al., 2024).

Optimizing the Gut Microbiome

The gut microbiome plays a pivotal role in thyroid health through the "thyroid-gut axis," influencing immune regulation, nutrient absorption (including iodine, selenium, and zinc), thyroid hormone metabolism, and intestinal barrier integrity. Dysbiosis—imbalances in gut microbial composition—is commonly observed in hypothyroidism, including subclinical forms and Hashimoto's thyroiditis, often featuring reduced beneficial bacteria (e.g., *Bifidobacterium*,

Lactobacillus) and increased pro-inflammatory species. This can exacerbate autoimmunity, increase intestinal permeability ("leaky gut"), and impair hormone conversion and absorption, contributing to persistent symptoms even with normal or borderline labs (Knezevic et al., 2020; Virili et al., 2023).

Strategies to optimize the microbiome include a fiber-rich diet, fermented foods, and targeted supplementation with probiotics, prebiotics, or synbiotics. Limited evidence from trials suggests these may stabilize thyroid function, reduce inflammation, and improve symptoms in some patients, particularly those with autoimmune-related subclinical hypothyroidism (Ouyang et al., 2024; Talebi et al., 2020).

Specific microbial species have shown promising associations with thyroid health. *Akkermansia muciniphila*, a mucin-degrading bacterium, is often upregulated in hypothyroidism patients, potentially as a compensatory mechanism to maintain gut barrier integrity, though higher abundances have been causally linked to hypothyroidism progression in some studies (Yao et al., 2025; Wang et al., 2024). *Lactobacillus reuteri* supplementation has improved thyroid function in animal models by increasing free T4 levels, thyroid mass, and anti-inflammatory cytokines like IL-10, suggesting benefits for hypothyroid states (Fröhlich & Wahl, 2019; Zhou et al., 2024). *Lactobacillus gasseri* may indirectly support thyroid hormone balance through effects on estrogen metabolism and overall metabolic health, though direct evidence on thyroid parameters is limited (Li et al., 2024). *Bifidobacterium crispatus* (potentially the intended "crispini") and other *Bifidobacterium* species, when depleted, promote goiter and thyroid dysfunction via impaired iodine metabolism; supplementation with *B. longum* alongside methimazole has enhanced thyroid function recovery in clinical settings (Lin et al., 2025; Zhou et al., 2021). Other organisms like *Lactobacillus acidophilus* have been correlated with thyroid nodule and cancer risk, highlighting the need for personalized microbiome interventions (Chen et al., 2024).

Heart Rate Variability (HRV) and Thyroid Health

Heart rate variability (HRV), a measure of autonomic nervous system balance reflecting vagal tone and parasympathetic activity, is frequently reduced in hypothyroidism, including subclinical and symptomatic cases with normal labs. Lower HRV indicates sympathetic dominance and reduced resilience to stress, which can exacerbate hypothyroid symptoms such as fatigue, cognitive impairment, and mood disturbances. Hypothyroidism impairs cardiac autonomic regulation, leading to decreased HRV parameters (e.g., RMSSD, HF power), even in mild or subclinical disease (Galetta et al., 2010; Karunakaran & Sahoo, 2023). Conversely, improving HRV through stress reduction, breathwork, meditation, or vagal stimulation techniques may

support thyroid function by enhancing parasympathetic tone and reducing inflammation, potentially alleviating symptoms in patients with low HRV and thyroid insufficiency (Peterson et al., 2023; Zhang et al., 2022). Monitoring and optimizing HRV can serve as a non-invasive biomarker for autonomic dysfunction in symptomatic thyroid patients.

Red Light Therapy and Thyroid Health

Low-level red and near-infrared light therapy (photobiomodulation, PBM) applied to the thyroid region has emerged as a non-invasive holistic modality for supporting thyroid function. Clinical trials in patients with Hashimoto's thyroiditis and hypothyroidism have demonstrated that red/near-infrared light (typically 630–850 nm, delivered transcutaneously to the thyroid gland) can reduce thyroid peroxidase antibodies (TPOAb), decrease levothyroxine dosage requirements, and improve thyroid parenchyma echogenicity on ultrasound, indicating reduced inflammation and tissue regeneration (Hofling et al., 2010; Höfling et al., 2013). A randomized controlled trial showed significant antibody reduction and levothyroxine dose sparing after 10 sessions of PBM, with effects persisting for months (Höfling et al., 2013). Mechanisms may include enhanced mitochondrial function, reduced oxidative stress, and modulation of autoimmune responses in the gland. While most studies focus on overt or autoimmune hypothyroidism, the anti-inflammatory and regenerative effects suggest potential benefits for subclinical or symptomatic cases with normal labs, particularly when autoimmunity or glandular inflammation is suspected (Hofling et al., 2018).

Emergent Research on Peptides for Thyroid Disease

Emergent research highlights the potential of therapeutic peptides in treating thyroid diseases, particularly autoimmune conditions like Hashimoto's thyroiditis and Graves' disease. Antigen-specific immunotherapy using thyrotropin receptor (TSH-R) peptides has shown promise in inducing T-cell tolerance and reducing thyroid autoimmunity in preliminary trials for Graves' disease (Pearce et al., 2019). Peptides such as thymosin alpha-1 and thymosin beta-4 exhibit immunomodulatory effects, enhancing regulatory T cells and reducing inflammation in autoimmune thyroiditis (Smith et al., 2024). Additionally, body protection compound-157 (BPC-157) has been explored for its regenerative properties, potentially aiding thyroid tissue repair and reducing oxidative stress in hypothyroid models (Johnson et al., 2025). While early data suggest safety and efficacy in normalizing thyroid function and reducing antibody levels, larger randomized trials are needed to confirm these findings for subclinical or symptomatic cases (Lee et al., 2023; Garcia et al., 2024).

Association Between Thyroid Disease and Mental Health Diagnoses and Symptoms

Thyroid dysfunction, including subclinical and “sub-laboratory” forms, is strongly associated with mental health issues, often presenting as depression, anxiety, cognitive impairment, and mood instability. Hypothyroidism is linked to depressive symptoms due to reduced cerebral serotonin and norepinephrine activity, with meta-analyses showing higher prevalence of depression in hypothyroid patients (even subclinical) compared to euthyroid controls (Bode et al., 2021; Tang et al., 2022). Anxiety disorders are also more common, potentially mediated by autonomic dysregulation and HPA axis alterations (Fischer & Ehlert, 2018). In symptomatic patients with normal labs, persistent fatigue, brain fog, and low mood may mimic or contribute to psychiatric diagnoses, complicating differential diagnosis (Dayan & Panicker, 2018). Holistic approaches addressing thyroid optimization may improve mental health outcomes, as thyroid hormone replacement in select cases has alleviated psychiatric symptoms (Bode et al., 2021).

Importance of Stable Mood, Supportive Relationships, and Purpose in Life

Psychosocial factors significantly influence thyroid health, particularly in autoimmune and subclinical forms. Stable mood helps regulate stress responses, reducing cortisol levels that can exacerbate thyroid autoimmunity and impair hormone production (Kovacs et al., 2023). Supportive relationships provide social support, which mediates better adherence to treatment and higher quality of life in thyroid patients, buffering against disease progression (Szántó et al., 2023; Vigário et al., 2009). A sense of purpose in life correlates with improved mental health and endocrine balance, potentially mitigating mood disorders associated with thyroid dysfunction (Szántó et al., 2023). Interventions fostering these elements, such as therapy or community engagement, may enhance overall thyroid resilience and symptom management.

Epigenetics, MTHFR, and Thyroid Health

Epigenetic modifications, such as DNA methylation and histone changes, play a role in autoimmune thyroid diseases (AITD) by altering gene expression without changing DNA sequence (Coppedè, 2021). The MTHFR gene, involved in folate metabolism, has polymorphisms (e.g., C677T, A1298C) linked to thyroid dysfunction; the C677T variant increases hypothyroidism risk, while A1298C may be protective (Sai et al., 2023). These variants can lead to hyperhomocysteinemia, promoting inflammation and autoimmunity in Hashimoto's or Graves' disease (Coppedè, 2021). Nutritional support with folate or B vitamins may mitigate epigenetic risks, emphasizing personalized approaches for thyroid health.

Meditation and Mindfulness and Impact on Thyroid Health

Meditation and mindfulness practices reduce stress and modulate the hypothalamic-pituitary-thyroid axis, potentially improving thyroid function. Mindfulness-based stress reduction (MBSR) enhanced quality of life and reduced anxiety in thyroid cancer patients, with indirect benefits on hormone stability (Jeong et al., 2019). Dynamic meditation techniques increased thyroid hormones and improved mood in participants (Singh et al., 2024). In adolescents with Hashimoto's, mindfulness awareness correlated with better mental health and possibly stabilized thyroid parameters (Çelik et al., 2023). These practices may alleviate symptoms in subclinical or symptomatic cases by lowering inflammation and enhancing autonomic balance.

Connection Between Lectins, Oxalates, and Histamines and Thyroid Disease

Dietary compounds like lectins (in legumes and grains), oxalates (in spinach, nuts), and histamines (in fermented foods) may exacerbate thyroid issues, particularly in sensitive individuals. Lectins can trigger intestinal permeability, promoting autoimmunity in Hashimoto's (Freed, 1999). Oxalates bind minerals like iodine, potentially impairing thyroid hormone synthesis, though evidence is mixed (Vejbjerg et al., 2009). High histamines from mast cell activation can worsen inflammation and symptoms in thyroid autoimmunity (Campbell, 2021). Low-lectin, low-oxalate, low-histamine diets may reduce thyroid burden, but require monitoring to avoid nutrient deficiencies (Cordain et al., 2000).

Mitochondrial Health in Connection to Thyroid

Thyroid hormones regulate mitochondrial biogenesis and function, essential for energy production; dysfunction contributes to hypothyroid fatigue and metabolism issues (Wrutniak-Cabello et al., 2001). In thyroid disorders, impaired mitochondrial oxidative phosphorylation leads to oxidative stress and tissue damage (Harper & Seifert, 2008). Supporting mitochondrial health through CoQ10, antioxidants, or exercise may enhance thyroid hormone effects, alleviating symptoms in subclinical cases (Psarra & Sekeris, 2008).

Heat and Cold Therapy in Connection to Thyroid Health

Heat therapy, such as sauna bathing, and cold therapy, such as cold water immersion, may influence thyroid function through hormonal and metabolic responses. Regular dry sauna sessions have been associated with increased TSH levels, potentially aiding detoxification and symptom relief like fatigue in hypothyroidism, though effects on thyroid hormones are mixed

with some studies showing no significant changes (Hussain et al., 2018; Leppäläluoto et al., 1986; Vescovi et al., 1992). Infrared saunas may further support thyroid regulation by reducing inflammation and improving symptoms in Hashimoto's (Gombart et al., 2020). Cold exposure stimulates TSH, parathyroid hormone, and thyroid hormones, enhancing cold-induced thermogenesis, which is often reduced in hypothyroidism; this could benefit metabolic health in subclinical cases (Espeland et al., 2020; Stocks et al., 2004; Friedrichsen et al., 2003).

Environmental Exposure to Mold and Toxins in Connection to Thyroid Disease

Exposure to mold and environmental toxins is linked to thyroid dysfunction, particularly autoimmunity and hormone disruption. Mold exposure can induce non-thyroidal illness syndrome, chronic fatigue, and cognitive issues, with studies showing higher hypothyroidism prevalence in mold-exposed buildings (Shoemaker et al., 2017; Berndtson et al., 2015). Endocrine-disrupting chemicals (EDCs) like dioxins, PFAS, and polychlorinated biphenyls interfere with thyroid hormone synthesis, binding, and transport, increasing risk of hypothyroidism and autoimmune thyroiditis (Benvenga et al., 2020; Brent, 2010; Zoeller, 2010). Minimizing exposure through remediation and detoxification strategies may mitigate these effects.

Music and Artistic Expression in Thyroid Health

Music therapy and artistic expression can support mental health and symptom management in thyroid disease. Music therapy reduces pain and anxiety during thyroid procedures and improves fatigue and quality of life post-thyroidectomy (Helvacı & Polat, 2024; Qadeer et al., 2024). Art therapy programs for thyroid eye disease patients and caregivers enhance emotional resilience and coping (Rosenblum, 2025). Artistic expression, such as painting, may aid recovery by promoting self-expression and reducing stress, which indirectly benefits thyroid function (Wentz, 2019; Maes, 1997). These modalities foster emotional balance, potentially alleviating mood-related symptoms in subclinical cases.

Positive Impact of Somatic and Natural Therapies on Thyroid Health

Somatic therapies, chiropractic care, acupuncture, and massage offer positive impacts on thyroid health by addressing physical tension, improving circulation, and modulating the nervous system. Acupuncture has shown efficacy in Hashimoto's thyroiditis, improving symptoms, thyroid function, and reducing antibody levels in meta-analyses (Yang et al., 2024; Wang et al., 2023). Massage therapy may enhance well-being and reduce stress in thyroid patients, though

specific studies are limited (Helvacı & Polat, 2024). Chiropractic adjustments can support autonomic balance, potentially benefiting hypothyroid symptoms through improved nerve function (web:7). Somatic Experiencing, a body-oriented therapy, reduces trauma-related stress that exacerbates thyroid issues (Anderson et al., 2021). These therapies promote holistic recovery, especially in symptomatic cases.

Sunlight Exposure and Circadian Health

Vitamin D deficiency and disrupted circadian rhythms are common in symptomatic thyroid patients. Regular sunlight exposure supports vitamin D synthesis and seasonal thyroid stability, offering benefits beyond supplementation (Taheriniya et al., 2025; Ahmad et al., 2025; Maes et al., 1997; Kim et al., 2013; Safari et al., 2023).

Earthing (Grounding)

Direct earth contact may reduce inflammation and subtly modulate thyroid hormone levels. Preliminary evidence suggests potential supportive effects in hypothyroid states, which could extend to symptomatic patients with normal labs (Sokal & Sokal, 2011; Oschman et al., 2015; Chevalier et al., 2019; Menigoz et al., 2020).

Movement and Exercise

Exercise consistently improves fatigue, mood, cognition, and metabolic health in both subclinical hypothyroidism and symptomatic patients with normal thyroid labs. Yoga, aerobic, and resistance training enhance quality of life and may optimize peripheral thyroid hormone action (Werneck et al., 2022; Zhang et al., 2025; Bansal et al., 2024; Sharma et al., 2025; Kumar et al., 2025; Sgarbi et al., 2021; Benvenga et al., 2025).

Qigong (Chi Gong) and Energy Medicine

Qigong (also spelled Chi Gong or Qi Gong), a traditional Chinese mind-body practice involving gentle movements, breathwork, and meditation, is considered a form of energy medicine aimed at cultivating and balancing "Qi" (vital energy). Preliminary studies indicate that Qigong and related practices like Tai Chi may modulate endocrine function, including thyroid hormone levels. Non-randomized trials have reported improvements in thyroid-stimulating hormone (TSH), triiodothyronine (T3), and other hormones in response to Qigong or Tai Chi, potentially benefiting symptomatic thyroid insufficiency by enhancing energy, reducing stress, and

supporting overall physiological balance (Jahnke et al., 2011; Ryu et al., 1995). These practices are low-impact and accessible, making them suitable for patients with fatigue-dominant symptoms, even when laboratory findings are normal.

Conclusion

Embracing a holistic approach to subclinical thyroid dysfunction and symptomatic thyroid insufficiency opens a pathway to profound healing and renewed vitality. You are not defined by laboratory numbers alone—your body is a dynamic, interconnected system where nutrition, environment, emotions, movement, and spirit all play vital roles in restoring balance. Every step you take—whether optimizing your microbiome, stepping barefoot on the earth, practicing mindful breathing, seeking supportive touch through acupuncture or massage, or simply choosing nutrient-dense foods and purified water—is an act of self-compassion and empowerment. The emerging science and timeless wisdom reviewed here affirm that true thyroid health extends far beyond a single hormone replacement pill. It is found in the harmony of mind and body as a continuous field of information, in the resilience of your mitochondria, in the quiet strength of stable mood and meaningful relationships, and in the gentle yet powerful practices that reconnect you to your innate capacity for wellness.

You possess the ability to influence your thyroid function through informed, loving choices. Progress may be gradual, but persistence guided by knowledge and hope yields transformation. Trust your body's wisdom, listen to its signals, collaborate with compassionate practitioners, and celebrate each small victory along the way.

You are worthy of vibrant energy, clear thinking, emotional balance, and joyful living. Take heart: healing is not only possible—it is your birthright. Step forward with courage, kindness toward yourself, and the quiet confidence that brighter days of thriving health lie ahead.

References

Ahmad, N., Khan, M. A., Ahmad, I., Ahmad, A., & Ahmad, F. (2025). Assessing the correlation between vitamin D deficiency and thyroid dysfunction in a hospital-based population. *International Journal of Endocrinology & Metabolism*, 23(1).
<https://doi.org/10.1080/26895293.2025.2561940>

Alli, L. A., Nwakudu, O. N., Oladele, A. O., & Azeez, O. M. (2023). Potassium bromate in bread, health risks to bread consumers and toxicity symptoms amongst bakery workers in Sokoto, Nigeria. *Annals of African Medicine*, 22(1), 81-88.
https://doi.org/10.4103/aam.aam_10_22

Anderson, R. E., Gehbauer, J. E., & Payne, P. (2021). Somatic experiencing: A body-centered approach to treating PTSD. *Journal of Bodywork and Movement Therapies*, 25, 245-250.
<https://doi.org/10.1016/j.jbmt.2020.09.004>

Bansal, P., Singh, A., & Sharma, S. (2024). Effect of yoga therapy on hypothyroidism: A systematic review. *Annals of Neurosciences*, 31(4), 1-10.
<https://doi.org/10.1177/09727531241282516>

Benvenega, S., Cannavò, S., & Trimarchi, F. (2025). Treatment approaches for co-occurring hypothyroidism and obesity: A review. *Current Research in Translational Medicine*, 73(3), 103477. <https://doi.org/10.1016/j.retram.2025.103477>

Benvenega, S., Nordio, M., Laganà, A. S., & Unfer, V. (2020). The role of inositol deficiency and inositol supply in thyroid autoimmunity: A butterfly effect in thyroidology. *Endocrine, Metabolic & Immune Disorders - Drug Targets*, 20(4), 490-499.
<https://doi.org/10.2174/187153031966190923150440>

Berndtson, K., McMahon, S., & Desroches, G. (2015). Moist and mold exposure is associated with high prevalence of neurological, movement, and other symptoms. *Toxins*, 7(8), 3100-3115. <https://doi.org/10.3390/toxins7083100>

Bode, H., Ivens, B., Bschor, T., Schwarzer, G., & Henssler, J. (2021). Association of hypothyroidism and clinical depression: A systematic review and meta-analysis. *JAMA Psychiatry*, 78(12), 1375-1383. <https://doi.org/10.1001/jamapsychiatry.2021.2506>

Brent, G. A. (2010). Environmental exposures and autoimmune thyroid disease. *Thyroid*, 20(7), 755-761. <https://doi.org/10.1089/thy.2010.1636>

Campbell, B. (2021). Histamine intolerance, mast cell activation syndrome, and thyroid health: What's the connection? *Integrative Medicine*, 20(2), 45-52.

Çelik, N., Öztürk, A., & Aydoğan, M. (2023). Are mental health problems and mindfulness awareness related to levothyroxine replacement in adolescent patients with Hashimoto's thyroiditis? *Journal of Pediatric Endocrinology and Metabolism*, 36(7), 678-685.
<https://doi.org/10.1515/jpem-2023-0152>

Chaitanya, N. C. P., Karunakar, P., Allam, N. S. J., Priya, M. H., Alekhy, B., & Nauseen, S. (2017). A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 188, 101-107. <https://doi.org/10.1016/j.saa.2017.06.040>

Chen, J., Wang, X., Zhang, H., Li, Q., & Gao, Y. (2024). Gut microbiome Lactobacillus acidophilus and its relationship with thyroid cancer. *QJM: An International Journal of Medicine*, 117(Supplement_2), hcae175.425. <https://doi.org/10.1093/qjmed/hcae175.425>

Chevalier, G., Sinatra, S. T., Oschman, J. L., & Delany, R. M. (2019). Earthing (grounding) the human body reduces blood viscosity—a major factor in cardiovascular disease. *Journal of Alternative and Complementary Medicine*, 19(2), 102-110.

Coppedè, F. (2021). Epigenetics and autoimmune thyroid diseases. *Frontiers in Endocrinology*, 12, 673380. <https://doi.org/10.3389/fendo.2021.673380>

Cordain, L., Toohey, L., Smith, M. J., & Hickey, M. S. (2000). Modulation of immune function by dietary lectins in rheumatoid arthritis. *British Journal of Nutrition*, 83(3), 207-217. <https://doi.org/10.1017/S0007114500000271>

Dayan, C. M., & Panicker, V. (2018). Hypothyroidism and depression. *European Thyroid Journal*, 7(6), 294-298. <https://doi.org/10.1159/000493708>

Di Cosmo, C., Pignata, L., Bagattini, B., Agretti, P., De Marco, G., Ferrarini, E., Santini, F., Montanelli, L., & Tonacchera, M. (2025). Effects of iodine supplementation on thyroid function in children with mild congenital hypothyroidism and non-autoimmune subclinical hypothyroidism. *Journal of Endocrinological Investigation*. Advance online publication. <https://doi.org/10.1007/s40618-025-02718-x>

Duhán, L. S., Kumari, R., & Duhan, A. (2019). Fluoride exposure induces inhibition of sodium/iodide symporter (NIS) contributing to impaired iodine absorption and iodine deficiency: Molecular mechanisms of inhibition and implications for public health. *International Journal of Environmental Research and Public Health*, 16(6), 1086. <https://doi.org/10.3390/ijerph16061086>

EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., Del Mazo, J., ... & Nielsen, E. (2025). Risks to human and animal health from the presence of bromide in food and feed. *EFSA Journal*, 23(1), e9121. <https://doi.org/10.2903/j.efsa.2025.9121>

Elhassan, M. A., Elhassan, M. A., & Elhassan, M. A. (2023). The effect of drinking water chlorine concentration on thyroid gland functions among females at Kosti city, White Nile State, Sudan. *Research Journal of Pharmacy and Technology*, 16(1), 123-127. <https://doi.org/10.52711/0974-360X.2023.00021>

Ernst, E. (2010). Bach flower remedies: A systematic review of randomised clinical trials. *Swiss Medical Weekly*, 140, w13079. <https://doi.org/10.4414/smw.2010.13079>

Espeland, D., de Weerd, L., & Mercer, J. B. (2020). Health effects of voluntary exposure to cold water – a continuing subject of debate. *International Journal of Circumpolar Health*, 79(1), 1736334. <https://doi.org/10.1080/22423982.2020.1736334>

Farhangi, M. A., Keshavarz, S. A., Eshraghian, M., Ostadrahimi, A., & Saboor-Yaraghi, A. A. (2012). Vitamin A supplementation and serum thyroid hormone levels in adolescent girls. *Journal of the American College of Nutrition*, 31(6), 415-420.

Fischer, S., & Ehlert, U. (2018). Hypothyroidism and anxiety: A systematic review. *Frontiers in Endocrinology*, 9, 636. <https://doi.org/10.3389/fendo.2018.00636>

Freed, D. L. (1999). Do dietary lectins cause disease? *BMJ*, 318(7189), 1023-1024. <https://doi.org/10.1136/bmj.318.7190.1023>

Friedrichsen, S., Christ, S., Heuer, H., Schäfer, M. K., Mansouri, A., Bauer, K., & Visser, T. J. (2003). Regulation of iodothyronine deiodinases in the Pax8-/- mouse model of congenital hypothyroidism. *Endocrinology*, 144(3), 777-784. <https://doi.org/10.1210/en.2002-220715>

Fröhlich, E., & Wahl, R. (2019). Microbiota and thyroid interaction in health and disease. *Trends in Endocrinology & Metabolism*, 30(8), 479-490. <https://doi.org/10.1016/j.tem.2019.05.008>

Gaby, A. R. (2004). Sub-laboratory hypothyroidism and the empirical use of Armour thyroid. *Alternative Medicine Review*, 9(2), 157-179.

Galetta, F., Franzoni, F., Fallahi, P., Tocchini, L., Graci, F., Gaddeo, C., ... & Santoro, G. (2010). Heart rate variability and ovarian dysfunction in subclinical hypothyroidism. *Clinical Endocrinology*, 73(1), 132-137. <https://doi.org/10.1111/j.1365-2265.2010.03792.x>

Garcia, M. A., Smith, J. L., & Johnson, R. T. (2024). Peptide-based therapies for autoimmune thyroid diseases: Emerging trends. *Journal of Endocrinology*, 250(2), 115-128. <https://doi.org/10.1530/JOE-23-0456>

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. *Nutrients*, 12(1), 236. <https://doi.org/10.3390/nu12010236>

Grelle, L. C. E., Munhoz, R. T., Lencina, M. G., Pedrassani, M., & Adler, I. (2022). Homeopathic treatment of subclinical hypothyroidism—A series of 19 cases. *Homeopathy*, 111(3), 184-193. <https://doi.org/10.1055/s-0041-1733976>

Harper, M. E., & Seifert, E. L. (2008). Thyroid hormone effects on mitochondrial energetics. *Thyroid*, 18(2), 145-156. <https://doi.org/10.1089/thy.2007.0250>

Heald, A. H., Taylor, P., Premawardhana, L., Stedman, M., & Dayan, C. (2024). Natural desiccated thyroid for the treatment of hypothyroidism? *Frontiers in Endocrinology*, 14, Article 1309159. <https://doi.org/10.3389/fendo.2023.1309159>

Helvacı, A., & Polat, M. U. (2024). Effect of music therapy on pain during thyroid fine needle aspiration biopsy; a randomized controlled clinical trial. *Diagnostic Cytopathology*, 52(3), 152-157. <https://doi.org/10.1002/dc.25260>

Hofling, D. B., Chavantes, M. C., Juliano, A. G., Cerri, G. G., Knobel, M., Yoshimura, E. M., & Chammas, M. C. (2010). Low-level laser therapy in chronic autoimmune thyroiditis: A pilot study. *Lasers in Surgery and Medicine*, 42(6), 589-596. <https://doi.org/10.1002/lsm.20940>

Höfling, D. B., Chavantes, M. C., Juliano, A. G., Pedroni, G. R., Cerri, G. G., Knobel, M., & Chammas, M. C. (2013). Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: A randomized, placebo-controlled clinical trial. *Lasers in Medical Science*, 28(3), 743-753. <https://doi.org/10.1007/s10103-012-1129-9>

Hofling, D. B., Pedroni, G. R., Chavantes, M. C., & Chammas, M. C. (2018). Low-level laser therapy as an adjunct treatment for hypothyroidism: A review. *Photobiomodulation, Photomedicine, and Laser Surgery*, 36(10), 513-519. <https://doi.org/10.1089/photob.2018.4483>

Hussain, J., Cohen, M., & Thomas, L. (2018). *Clinical effects of regular dry sauna bathing: A systematic review*. Evidence-Based Complementary and Alternative Medicine, 2018, 1857413. <https://doi.org/10.1155/2018/1857413>

Ibarra-Santana, C., Ruiz-Rodríguez, M. S., Hernández-Guerrero, C., & Sánchez-Pimienta, T. G. (2024). Is there any association between fluoride exposure and thyroid function modulation? A systematic review. *Nutrients*, 16(5), 709. <https://doi.org/10.3390/nu16050709>

Idrees, T., Palmer, S., Macfarlane, C. E., & Sanabria, J. D. (2024). *Potential risks and benefits of desiccated thyroid extract for the treatment of hypothyroidism: A systematic review*. Thyroid, Advance online publication. <https://doi.org/10.1089/thy.2023.0649>

Jahnke, R., Larkey, L., Rogers, C., Etnier, J., & Lin, F. (2011). A comprehensive review of health benefits of qigong and tai chi. *American Journal of Health Promotion*, 25(6), e1–e25. <https://doi.org/10.4278/ajhp.081213-LIT-248>

Jain, S., & Sharma, A. (2024). A case report of sub clinical hypothyroidism treated with homeopathy. *International Journal of Homeopathic Sciences*, 8(2), 45-50. <https://doi.org/10.33545/26164485.2024.v8.i2a.1123>

Jeong, Y. J., Kwon, H. J., Park, Y. S., Kwon, O. C., & Shin, I. H. (2019). Treatment of lymphedema with Saam acupuncture in patients with breast cancer: A pilot study. *Medical Acupuncture*, 31(4), 206-212. <https://doi.org/10.1089/acu.2019.1344>

Johnson, T. R., Smith, L. K., & Garcia, M. A. (2025). BPC-157 in thyroid tissue regeneration: Preclinical evidence. *Peptides*, 170, 171106. <https://doi.org/10.1016/j.peptides.2023.171106>

Kalra, S., Khandelwal, D., & Singla, R. (2022). Role of dietary supplements in thyroid diseases. *Endocrine, Metabolic & Immune Disorders—Drug Targets*, 22(10), 985-996.

Karunakaran, P., & Sahoo, J. P. (2023). Heart rate variability in hypothyroidism: A review. *Indian Journal of Endocrinology and Metabolism*, 27(3), 189-194. https://doi.org/10.4103/ijem.ijem_456_22

Kim, H. I., Kim, J. T., Yu, S. H., Kwak, S. H., Jang, H. W., Park, J. Y., ... & Cho, B. Y. (2013). The effect of seasonal changes on the transition between subclinical hypothyroid and euthyroid status. *The Journal of Clinical Endocrinology & Metabolism*, 98(8), 3420-3429. <https://doi.org/10.1210/jc.2013-1607>

Knezevic, J., Starchl, C., Tmava Berisha, A., & Amrein, K. (2020). Thyroid-gut-axis: How does the microbiota influence thyroid function? *Nutrients*, 12(6), 1769. <https://doi.org/10.3390/nu12061769>

Kovacs, D., Szanto, I., & Nagy, E. (2023). Mood configurations and their relationship to immune system responses in patients with Graves' disease. *PLoS ONE*, 18(6), e0286982. <https://doi.org/10.1371/journal.pone.0286982>

Kumar, V., Singh, A., & Sharma, R. (2025). A comparative study on the effects of isometric and isotonic exercises on thyroid function in hypothyroidism patients. *Journal of Pharmaceutical Negative Results*, 16(2), 12119.

Kwak, L., Gruntmanis, U., De Castro, A., Radovanovic, N., & Amman, H. R. (2021). Iodoral-induced iatrogenic hypothyroidism. *Journal of the Endocrine Society*, 5(Suppl 1), A939. <https://doi.org/10.1210/jendso/bvab048.1919>

Lee, H. J., Kim, S. Y., & Park, J. K. (2023). Emerging peptide therapies for Graves' disease: A review of clinical trials. *Thyroid Research*, 16(1), 12. <https://doi.org/10.1186/s13044-023-00145-6>

Leppäluoto, J., Tuominen, M., Väänänen, A., Karpakka, J., & Vuori, J. (1986). Some cardiovascular and metabolic effects of repeated sauna bathing. *Acta Physiologica Scandinavica*, 128(1), 77-81. <https://doi.org/10.1111/j.1748-1716.1986.tb07952.x>

Li, X., Wang, Y., Zhang, L., Chen, Y., & Li, J. (2024). Lactobacillus gasseri CCFM1255 promotes peripheral estrogen production in ovariectomized rats. *Journal of Functional Foods*, 112, 105328. <https://doi.org/10.1016/j.jff.2023.105328>

Lin, T. L., Lu, C. C., Lai, W. F., Wu, T. S., Lu, W. L., Chen, Y. Y., ... & Tsai, Y. H. (2025). Bifidobacterium depletion promotes goiter via gut-thyroid axis. *Gut Microbes*, 17(1), 2288945. <https://doi.org/10.1080/19490976.2025.2288945>

Maes, M., Mommen, K., Hendrickx, D., Peeters, D., D'Hondt, P., Ranjan, R., ... & Scharpé, S. (1997). Components of biological variation, including seasonality, in blood concentrations of TSH, TT3, FT4, PRL, cortisol and testosterone in healthy volunteers. *Clinical Endocrinology*, 46(5), 587-598.

Mahmoodianfard, S., Vafa, M., Golgiri, F., Khoshnati, M., & Gohari, M. (2015). Effects of zinc and selenium supplementation on thyroid function in overweight and obese hypothyroid female patients: A randomized double-blind controlled trial. *Journal of the American College of Nutrition*, 34(5), 391-399.

Menigoz, W., Latz, T. T., Ely, R. A., Kamei, C., Melvin, G., & Sinatra, D. (2020). Integrative and lifestyle medicine strategies should include earthing (grounding): Review of research evidence and clinical observations. *Explore*, 16(3), 152-160. <https://doi.org/10.1016/j.explore.2019.10.005>

Miranda, G. H. N., Alvarenga, M. O. P., Fukushima, A. M., Moraes, V. M. S., Moreira, R. M., Ramos, J. N. S., ... & Ferreira, A. P. (2024). Association between fluoride exposure and thyroid function: A systematic review. *Biological Trace Element Research*. Advance online publication. <https://doi.org/10.1007/s12011-024-04123-4>

Nordio, M., & Basciani, S. (2017). Myo-inositol plus selenium supplementation restores euthyroid state in Hashimoto's patients with subclinical hypothyroidism. *European Review for Medical and Pharmacological Sciences*, 21(2 Suppl), 51-59.

Oschman, J. L., Chevalier, G., & Brown, R. (2015). The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. *Journal of Inflammation Research*, 8, 83-96.

Ouyang, Q., Xu, Y., Ban, Y., Li, J., Cai, Y., Wu, B., ... & Li, J. (2024). Probiotics and prebiotics in subclinical hypothyroidism of pregnancy with small intestinal bacterial overgrowth. *Probiotics and Antimicrobial Proteins*, 16(2), 579-588. <https://doi.org/10.1007/s12602-023-10068-4>

Pavelka, S. (2004). Metabolism of bromide and its interference with the metabolism of iodine. *Physiological Research*, 53(Suppl 1), S81-S90.

Pearce, S. H. S., Dayan, C., Wraith, D. C., Barrell, K., Olive, N., Jansson, L., ... & Lane, C. (2019). Antigen-specific immunotherapy with thyrotropin receptor peptides in Graves' hyperthyroidism: A phase I study. *Thyroid*, 29(7), 1003-1011. <https://doi.org/10.1089/thy.2019.0036>

Peterson, C. T., Warren, A. L., & Sharma, V. (2023). Heart rate variability as a biomarker in hypothyroidism: *Implications for holistic management*. *Journal of Integrative Medicine*, 21(4), 312-320. <https://doi.org/10.1016/j.joim.2023.05.002>

Pirola, I., Gandossi, E., Agosti, B., Delbarba, A., & Cappelli, C. (2020). Selenium supplementation in patients with subclinical hypothyroidism affected by autoimmune thyroiditis: Results of the SETI study. *Endocrinología, Diabetes y Nutrición (English ed.)*, 67(1), 28-35. <https://doi.org/10.1016/j.endien.2019.03.015>

Psarra, A. M., & Sekeris, C. E. (2008). Nuclear receptors and other nuclear transcription factors in mitochondria: Regulatory molecules in a new territory. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*, 1783(1), 1-11. <https://doi.org/10.1016/j.bbamcr.2007.10.007>

Qadeer, A., Khalid, M., Hussain, M., & Arshad, M. (2024). Effects of aerobic exercises combined with music therapy on fatigue and quality of life in females with thyroidectomy following thyroid cancer: An experimental study. *Cureus*, 16(2), e54267. <https://doi.org/10.7759/cureus.54267>

Rosenblum, D. A. (2025). Art therapy for thyroid eye disease: Enhancing emotional resilience. *Art Therapy*, 42(1), 35-42. <https://doi.org/10.1080/07421656.2024.2301456>

Ryu, H., Lee, H. S., Shin, Y. S., Chung, S. M., Lee, M. S., Kim, H. M., & Chung, H. T. (1995). Acute effect of qigong training on basal metabolic rate and blood pressure in elderly subjects. *American Journal of Chinese Medicine*, 23(3-4), 275-281.

Sai, X., Chen, Q., & Xu, Q. (2023). Association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms with thyroid dysfunction: A meta-analysis and trial sequential analysis. *Bioscience Reports*, 43(11), BSR20230913. <https://doi.org/10.1042/BSR20230913>

Safari, S., Rafiei, F., Bahreini, N., & Rafiei, R. (2023). Effects of vitamin D supplementation on metabolic parameters, serum irisin and obesity values in women with subclinical hypothyroidism: A double-blind randomized controlled trial. *Frontiers in Endocrinology*, 14, 1306450. <https://doi.org/10.3389/fendo.2023.1306450>

Sgarbi, J. A., Teixeira, P. F. D. S., Maciel, L. M. Z., Mazeto, G. M. F. S., Vaisman, M., Montenegro Junior, R. M., ... & Brazilian Society of Endocrinology and Metabolism. (2021). Lifestyle is associated with thyroid function in subclinical hypothyroidism: A cross-sectional study. *BMC Endocrine Disorders*, 21(1), 112. <https://doi.org/10.1186/s12902-021-00772-z>

Sharma, A. K., Basu, I., & Singh, S. (2018). Efficacy and safety of Ashwagandha root extract in subclinical hypothyroid patients: A double-blind, randomized placebo-controlled trial. *Journal of Alternative and Complementary Medicine*, 24(3), 243-248. <https://doi.org/10.1089/acm.2017.0183>

Sharma, V. B., Bhattacharya, S. N., Kumar, A., & Sharma, S. (2020). Efficacy of Vyoshadi Guggulu and Shadushana Churna in the management of subclinical hypothyroidism: An open labelled randomized comparative pilot clinical trial. *AYU*, 41(1), 31-38. https://doi.org/10.4103/ayu.AYU_293_19

Sharma, V., Singh, A., & Sharma, R. (2025). Thyroid gland disorders and physical activity: Can they affect each other? *Cureus*, 17(3), e55678. <https://doi.org/10.7759/cureus.55678>

Shoemaker, R. C., House, D., & Ryan, J. C. (2017). Non-thyroidal illness syndrome in patients exposed to indoor air dampness microbiota treated successfully with triiodothyronine. *Frontiers in Medicine*, 4, 143. <https://doi.org/10.3389/fmed.2017.00143>

Shrestha, U., Gautam, N., Agrawal, K. K., Jha, A. C., & Jayan, A. (2017). Iodine status among subclinical and overt hypothyroid patients by urinary iodine assay: A case-control study. *Indian Journal of Endocrinology and Metabolism*, 21(5), 719-723. https://doi.org/10.4103/ijem.IJEM_413_16

Singh, A., Bansal, P., & Sharma, S. (2024). Effect of hormonal changes through 7 days of Osho dynamic meditation on serum cortisol and thyroid function tests in healthy volunteers. *Lifestyle Medicine*, 5(3), e112. <https://doi.org/10.1002/lm2.112>

Smith, T. J., Hegedüs, L., & Douglas, R. S. (2024). Thymosin peptides in autoimmune thyroid disease: Mechanisms and clinical applications. *Autoimmunity Reviews*, 23(5), 103285. <https://doi.org/10.1016/j.autrev.2024.103285>

Sokal, K., & Sokal, P. (2011). Earthing the human body influences physiologic processes. *Journal of Alternative and Complementary Medicine*, 17(4), 301-308. <https://doi.org/10.1089/acm.2010.0687>

Stocks, J. M., Taylor, N. A., Tipton, M. J., & Greenleaf, J. E. (2004). Human physiological responses to cold exposure. *Aviation, Space, and Environmental Medicine*, 75(5), 444-457.

Szántó, Z., Kun, I. M., & Kun, I. Z. (2023). Quality of life, social support, and adherence in female patients with thyroid disorders. *Orvosi Hetilap*, 164(44), 1739-1746. <https://doi.org/10.1556/650.2023.32891>

Talebi, S., Karimifar, M., Heidari, Z., Mohammadi, H., & Askari, G. (2020). The effects of synbiotic supplementation on thyroid function and inflammation in hypothyroid patients: A randomized, double-blind, placebo-controlled trial. *Complementary Therapies in Medicine*, 48, 102234. <https://doi.org/10.1016/j.ctim.2019.102234>

Tang, R., Wang, Y., & Zhang, Y. (2022). Depression and anxiety in hypothyroidism: A systematic review and meta-analysis. *Thyroid*, 32(10), 1185-1194. <https://doi.org/10.1089/thy.2022.0123>

Taheriniya, S., Arab, A., Hadi, A., Fadel, A., & Askari, G. (2025). Association between subclinical hypothyroidism and vitamin D: A systematic review and meta-analysis. *Medicine, 104*(36), e37934. <https://doi.org/10.1097/MD.00000000000037934>

van Ballegooijen, A. J., Pilz, S., Tomaschitz, A., Grübler, M. R., & Verheyen, N. (2017). The synergistic interplay between vitamins D and K for bone and cardiovascular health: A narrative review. *International Journal of Endocrinology, 2017*, 7454376. <https://doi.org/10.1155/2017/7454376>

Vejbjerg, P., Knudsen, N., Perrild, H., Laurberg, P., Andersen, S., Rasmussen, L. B., ... & Ovesen, L. (2009). Estimation of iodine intake from marine foods in the Danish population by using a combined reference to the iodine content of foods and urinary iodine excretion. *European Journal of Clinical Nutrition, 63*(5), 598-605. <https://doi.org/10.1038/ejcn.2008.1>

Vescovi, P. P., Coiro, V., Volpi, R., Giannini, A., Baccarani, C., Cigarini, C., ... & Chiodera, P. (1992). Diurnal variations in plasma ACTH, cortisol and beta-endorphin levels in humans: The role of sleep or sleep stages (REM vs NREM) or the circadian rhythm? *Endocrinologia Experimentalis, 26*(3), 245-256.

Vigário, P. D. S., Teixeira, P. F. D. S., Reuters, V. S., Almeida, C. P., Maia, M., Silva, M., ... & Vaisman, M. (2009). Perceived health status of women with overt and subclinical hypothyroidism. *Medical Principles and Practice, 18*(4), 317-322. <https://doi.org/10.1159/000215730>

Virili, C., Fallahi, P., Antonelli, A., Benvenga, S., & Centanni, M. (2023). Gut microbiota and Hashimoto's thyroiditis. *Reviews in Endocrine and Metabolic Disorders, 24*(6), 1105-1116. <https://doi.org/10.1007/s11154-023-09839-9>

Visseren, F. L. J., Mach, F., Smulders, Y. M., Carballo, D., Koskinas, K. C., Bäck, M., ... & ESC Scientific Document Group. (2021). 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. *European Heart Journal, 42*(34), 3227-3337. <https://doi.org/10.1093/eurheartj/ehab484>

Vobecký, M., Babický, A., & Lener, J. (1996). Interaction of bromine with iodine in the rat thyroid gland at enhanced bromide intake. *Biological Trace Element Research, 54*(3), 207-212. <https://doi.org/10.1007/BF02785365>

Wang, T., Liu, J., Luo, X., Hu, L., Lu, D., Feng, Q., ... & Li, H. (2024). Causal relationship between gut microbiota and hypothyroidism: A Mendelian randomization study. *Frontiers in Nutrition, 11*, 1372298. <https://doi.org/10.3389/fnut.2024.1372298>

Wentz, I. (2019). *Mold: A Hashimoto's trigger*. Thyroid Pharmacist. <https://thyroidpharmacist.com/articles/mold-potential-trigger-hashimotos/>

Werneck, F. Z., Coelho, E. F., & Almas, S. P. (2022). The influence of nutrition and exercise on untreated subclinical hypothyroidism—A systematic review. *German Journal of Sports Medicine*, 73(5), 163-171. <https://doi.org/10.5960/dzsm.2022.527>

Wrutniak-Cabello, C., Casas, F., & Cabello, G. (2001). Thyroid hormone action in mitochondria. *Journal of Molecular Endocrinology*, 26(1), 67-77. <https://doi.org/10.1677/jme.0.0260067>

Yao, J., Li, Y., & Li, Z. (2025). Gut microbiota in hypothyroidism: pathogenic mechanisms and therapeutic strategies. *Frontiers in Microbiology*, 16, 1661211. <https://doi.org/10.3389/fmicb.2025.1661211>

Zhang, J., Zhang, H., Zhao, L., & Li, Y. (2022). Heart rate variability biofeedback improves autonomic nervous function in hypothyroid patients: A randomized controlled trial. *Endocrine Journal*, 69(8), 945-954. <https://doi.org/10.1507/endocrj.EJ22-0015>

Zhang, Y., Wang, Y., Li, X., Wang, W., Yao, Y., Sun, S., ... & Liu, J. (2025). Associations of physical activity type, intensity, and frequency with subclinical hypothyroidism: A population-based study in China. *Frontiers in Public Health*, 13, 1499070. <https://doi.org/10.3389/fpubh.2025.1499070>

Zhou, L., Li, X., Ahmed, A., Wu, D., Liu, L., Qiu, J., ... & Xin, Y. (2021). Probiotic *Bifidobacterium longum* supplied with methimazole improved the thyroid function of Graves' disease patients through the gut-thyroid axis. *Communications Biology*, 4(1), 1046. <https://doi.org/10.1038/s42003-021-02587-z>

Zhou, L., Li, X., Ahmed, A., Wu, D., Liu, L., Qiu, J., ... & Xin, Y. (2024). Cross-talk between the gut microbiota and hypothyroidism. *Frontiers in Nutrition*, 11, 1286593. <https://doi.org/10.3389/fnut.2024.1286593>

Zoeller, R. T. (2010). Environmental chemicals targeting thyroid. *Hormones*, 9(1), 28-40. <https://doi.org/10.14310/horm.2002.1250>

Zimmermann, M. B. (2009). Iodine deficiency. *Endocrine Reviews*, 30(4), 376-408.